
A NEW FLAVONE GLUCOSIDE FROM Stachys aegyptiaca

S. K. El-Desoky, Usama W. Hawas, and M. Sharaf

In addition to 5,7,3'-trihydroxy-6,4'-dimethoxyflavone, 5,7,3'-trihydroxy-6,8,4'-trimethoxyflavone, isoscutellarein, luteolin, and luteolin-7-O-glucoside, the methanol extract of the aerial parts of Stachys aegyptiaca yielded a new flavone identified as luteolin 3',4'-dimethylether-7-O- β -D-glucoside on the basis of chemical and spectroscopic methods.

Key words: Stachys aegyptiaca, Lamiaceae, new flavone glucoside.

Stachys aegyptiaca is a perenninal plant growing wild in the Sinai desert [1] and proved to be a rich source for flavonoids. We have previously reported the isolation and structure elucidation of diapigenin 7-O-(6"-trans-6"-cis-p,p'-dihydroxy- μ -truxinyl)glucoside [stachysetin] [2] and hypoluetin 7-[6"-acetylallosyl-(1 \rightarrow 2)-3"-acetyl-glucoside, along with 24 known flavonoid aglycones and glycosides [3]. Also, the acetylated isoscutellarein glucoside was reported [4]. In continuation of our study on the phenolic constituents of *S. aegyptiaca*, the present communication describes the further isolation and structure elucidation of a new flavone glycoside, the structure of which was identified as luteolin 3',4'-dimethylether-7-O-glucoside from the aerial parts of the same plant.

The methanol extract of the aerial parts of *S. ageyptiaca* was fractionated on a polyamide column with H_2O as eluent with increasing amounts of MeOH. Isolation and purification were achieved by combination of PPC, TLC on silica gel and Sephadex LH-20.

Flavonoid **1** was isolated as a yellowish white amorphous powder. Acid hydrolysis of **1** afforded glucose, which was identified by co-chromatography with authentic samples and the aglycone **1a**. The UV spectral data of **1a** with diagnostic shift reagents [5] indicated a flavone, absence of a free *ortho*-dihydroxyl pattern, occupation at positions-3' and -4', and a free hydroxyl group at position-7. The UV spectral data of **1** indicated a flavone with occupation at positions-7,3' and -4' [5].

The EI-MS spectrum of permethylated [6] **1** gave a molecular ion peak at m/z 546 (66%) in accordance with fully methylated luteolin glucoside. A fragment at m/z 328 was due to the aglycone luteolin bearing three methoxyl groups. The identity of the glucose moiety was confirmed by the fragment at m/z 218 due to the ion [glucose-H]⁺ and the fragment at m/z 187 for the ion [glucose-MeOH]⁺.

The ¹H NMR spectrum of **1** showed that it is a monoglucoside of luteolin dimethylether on the basis of the signal H-1 glucose (δ 5.1), and the coupling constant (J = 7.5 Hz) is characterized for a β -linked glucose. Furthermore, the chemical shift (δ 5.1) confirmed that the glucose is directly attached to the aglycone [7]. The spectrum also showed signals at δ 7.4 and δ 6.9 (m; d, J = 8.0 Hz) assigned for H-2',6' and H-5', confirming the disubstituted pattern at ring-B. Two doublets (J = 2.5 Hz) at

UDC 547.972

Phytochemistry and Plant Systematic Department, National Research Centre, Dokki-12311, Cairo, Egypt, e-mail: sharafali58@hotmail.com. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 444-445, September-October, 2007. Original article submitted June 12, 2006.

 δ 6.8 and δ 6.4 were assigned for H-8 and H-6, while H-3 appeared as a singlet at δ 6.75. The two methoxyls groups appeared as two singlets at δ 3.95 and δ 3.90.

The ¹³C NMR spectrum confirmed that **1** is a monoglucoside of luteolin on the basis of C-6 glucose (δ 61.0). The ¹³C NMR shifts of the aglycone part of **1** correspond with the shifts of luteolin [8], the only difference being a downfield shift of the signal assigned to C-3' and C-4' by approximately 3.7 ppm, confirming the location of the –OCH₃ groups at C-3' and C-4'. Also the signal assigned to C-7 was shifted upfield by approximately 2 ppm and there was a downfield shift of about 1.8 ppm for the *para*-related carbon (C-10). These shifts are analogue to those reported when the hydroxyl group is glycosylated at C-7 in flavonoids [9 – 11]. The assignments of the glucose carbons in **1** are based on those given in the literature [7, 11, 12]. From the above data, compound **1** is identified as luteolin 3',4'-dimethylether-7-*O*- β -D-glucoside.

EXPERIMENTAL

Plant Material. S. aegyptiaca aerial parts were collected around the Suez Canal University guest house at Saint Catherine, Sinai, in March 2004.

Extraction and Isolation. Dried plant (1.25 kg) was extracted with 80% MeOH. The concentrated extract was subjected to a polyamide column eluted with a H₂O-MeOH mixture with increasing amounts of MeOH. PPC using H₂O, 15% AcOH, BAW (*n*-BuOH–AcOH–H₂O, 4:1:5, upper phase) afforded pure samples of the known flavonoids and the aglycone **1a**. A combination of TLC (CHCl₃–MeOH–H₂O, 45:30:2) and Sephadex LH-20 (MeOH) afforded compound **1**.

Luteolin 3',4'-dimethylether-7-*O*-*β***-D-glucoside (1)**. UV spectra (MeOH, λ_{max} , nm): 255, 267, 352; +NaOMe: 265, 397; +AlCl₃: 273, 297, 330sh, 422; AlCl₃+HCl: 260, 275, 297, 350, 385; NaOAc: 260, 370; NaOAc+ H₃BO₃: 260, 370. ¹H NMR (270 MHz, DMSO-d₆, δ, J/Hz): 7.40 (2H, m, H-2',6'), 6.90 (1H, d, J = 8.0, H-5'), 6.80 (1H, d, J = 2.5, H-8), 6.75 (1H, s, H-3), 6.40 (1H, d, J=2.5, H-6), 5.1 (1H, d, J = 7.5 Hz, H-1 glu), 3.95 (3H, s, -OCH₃), 3.90 (3H, s, -OCH₃). ¹³C NMR (270 MHz, DMSO-d₆, δ): 55.0 (-OCH₃), 55.8 (-OCH₃), 61.0 (C-6"), 69.6 (C-4"), 73.5 (C-2"), 76.2 (C-3"), 77.2 (C-5), 94.5 (C-8), 99.8 (C-6), 100.0 (C-1), 103.0 (C-3), 105.0 (C-10), 111.0 (C-2'),120.0 (C-6'), 124.5 (C-1'), 149.5 (C-3'), 151.5 (C-4'), 152.5 (C-5'), 158.9 (C-9), 161.0 (C-5), 162.7 (C-7), 164.4 (C-2),182.0 (C-4).

REFERENCES

- 1. V. Tackholm, *Student's Flora of Egypt*, Cairo University, Cairo, 1974, p. 464.
- 2. M. A. El-Ansari, D. Barron, M. F. Abdalla, N. A. M. Saleh, and J. L. Le Quere, *Phytochemistry*, **30**, 1169 (1991).
- 3. M. A. El-Ansari, M. A. Nawwar, and N. A. M Saleh, *Phytochemistry*, 40, 1543 (1995).
- 4. M. Sharaf, *Fitoterapia*, **69** (4), 35 (1998).
- 5. T. J. Mabry, K. R. Markham, and M. B. Thomas, *The Systematic Identification of Flavonoids*, Springer, Berlin, 1970.
- 6. S. Hokomori, J. Bichem. (Tokyo), 55, 205 (1964).
- 7. B. O. Osterdahl and G. Lindberg, Acta Chem. Scand., B31, 293 (1979).
- 8. K. R. Markham and V. M. Chari, *The Flavonoids: Advances in Research*, In: J. B. Harbone, T. J. Mabry, editors, Chapman and Hall, London, 1982.
- 9. M. Sharaf, M. A. El-Ansari, and N. A. M. Saleh, *Fitoterapia*, **69**, 47 (1998).
- 10. K. R. Markham and B. Ternai, *Tetrahedron*, **32**, 2607 (1976).
- 11. K. R. Markham, B. Ternai, R. Stanley, H. Geiger, and T. J. Mabry, *Tetrahedron*, 34, 1389 (1978).
- 12. O. B. Osterdahl, Acta Chem. Scand., **B30**, 867 (1976).